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Hard-spin mean-field theory: A systematic derivation and exact correlations in one dimension
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Hard-spin mean-field theory is an improved mean-field approach which has proven to give accurate results,
especially for frustrated spin systems, with relatively little computational effort. In this work, the previous
phenomenological derivation is supplanted by a systematic and generic derivation that opens the possibility for
systematic improvements, especially for the calculation of long-range correlation functions. A first level of
improvement suffices to recover the exact long-range values of the correlation functions in one dimension.

PACS numbgs): 05.70.Fh, 64.60.Cn, 75.10b, 05.50+q

. INTRODUCTION respectively, andHg contains the rest of the interactions.
Then for a particular spin operatél; in S;,

Hard-spin mean-field theofHSMFT) [1-11] is a novel
“mean-field” approach for classical spin models, which cor-
rectly gives no finite-temperature phase transition in one di- > 0,e A > 0,6 ALt HytHe)
mension, and agrees quantitatively with the existing Monte B
Carlo data for the finite-field phase diagram of the fully frus- (O1)= - EB:
trated antiferromagnetic Ising model on a triangular lattice E e AT 2 e P
[1,2,8. The latter has a zero-temperature phase transition in S S
the absence of external field, in contrast to the ferromagnetic
version with a finite Curie temperature. All these features 2 e Azt He)
attest to its superiority to the standard mean-field methods, :E SZ—E 0, P
which fail in these regards. B S e hH St

In this paper, | present a generic derivation of the HSMFT S
equations, allowing for systematic improvements of their ac-
curacy, and later argue that the lowest level of approximation S e S 0 e b
is rather inaccurate in predictings;s;). Nevertheless, the 5B s '
next level of approximation within the same framework re- :2
covers the exact result in spatial dimensios 1. At this BN et Y e
level, HSMFT also differentiates between a two-dimensional S S1
(2D) triangular and a 3D cubic lattice which is otherwise a
typical failure of the mean-field theories. => p(B)(0)P, )

HSMFT combines the mean-field logic with the hard-spin B
condition (s?=1) which is in fact a crucial aspect of the
frustrated Ising models. Therefore it is particularly successfu{,\,here<ol>(15) indicates the average @, over S; with a
in the analysis of such systertier a recent study, see, e.g., fixed boundary conditioti.e., a frozen configuration d8).
[12]). Below is a systematic description of the theory. Note that above intuitive result is exact. Nop(B), being a

function of spins inB only, can be written as

Il. HARD-SPIN MEAN-FIELD THEORY: A SYSTEMATIC
GENERIC DERIVATION S
2

Given a lattice in any dimension, consider the partition in B
Fig. 1. Consider nearest-neighbor couplings so that there is
no direct coupling between the spins in regidsand S,
(for longer range interactions, the bound&ghould be cho-
sen thick enough to ensure this decouplifi@ecompose the Sl
Hamiltonian into three parts:

H= Hl+ H2+ HB f
FIG. 1. Decomposition of space into three paBgs:(bounded,

such thatH, andH, involve interactions withinS; and S, B (boundary, andS, (outside.
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FIG. 2. Standard MFT(@) versus HSMFT(b). Dashed lines
indicate the neglected correlations in each case. \vli" 04
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HSMFT equations, written down phenomenologically in  FIG. 3. HSMFT prediction foKs;s; ) (solid) compared with
previous workg1,2], are obtained from this systematic ex- the exact value of tanh (dashedl which is recovered at the next

pansion by neglecting the correlations in Eg) for p(B). level of approximation implemented here.
However, this can be done at different levels. We can neglect
all connected graphs by setting wherey is the real root ofy®*—2y?+ y—1=0. This result is
- eVl .. to be compared with the exact valig=0.4407 and the
(sisj- s =(s)(s) - (S @ mean-field resuld, —0.25.
This leads to a set of self-consistent equations(&). To Similarly, by choosings, to be a cluster of two spins, one

contrast with traditional mean-field theory, what we neglectcan write down self-consistent equations for and I';
here is the effect of correlations among the boundary spin&{SoS1) and solve simultaneously. Let no%={s,,s,} (a
on the average magnetization gf, rather than the correla- nearest-neighbor pajB={s_ s, } (left and right neighbors
tions of s, itself with its neighbors(Fig. 2. We will see  0f the S; cluste), and S, the rest of the spin chain. As
below that the above improvement on the traditional meanbefore,m=0 is obtained from Eq(1) and we calculatd’;
field approximation already recovers the exact valugsyf ~ Similarly as

=0 for the 1D Ising ferromagnet, but predicts the nearest-

neighbor correlations;s;) incorrectly. Yet the exact values 1
for (sis;) can be obtained by further including two-point L= > Z[1+m(s,+s+)+mzs,s+]
connected graphs in EQR). S-Sy
Ill. HSMFT OF THE d=1 ISING FERROMAGNET D 55,0 (s st sis2esy)
51,52
Consider the one dimensional ferromagnetic Ising model ' ®)

2 @J(s-s1+815+555,)

given by the Hamiltonian
S1,5

—BH=J32, SiSi+1-
A 2." P which simplifies to give

In correspondence with the above partition, defiSe
={sy},B={s_,s.} (left and right neighbors o), and S, 1[/e*cosh2-1 e*—cosh2

= + .
e?cosh2+1 e*+cosh2

as the rest of the spin chain. Then the self-consistent equa- F1—2
tion for (sp)=m is

(6

Figure 3 provides a comparison of E() and the exact
value,I";=tanhJ. In the low temperature limitJ—o), we
(4)  incorrectly obtainl';—2/3 rather than 1. Yet, note that we
_ o obtain a nonzero correlation in spite of the fact tatitcon-
which simplifies to nected graphs are neglected in E8). Without including
m=mtank2J) any connected graphs, this result can be improved by con-
’ sidering a largeB; cluster, as was suggested in R&f]. For

correctly givingm=0 everywhere except at zero tempera-€xample, for a cluster of three spins, one gé{s-3/4 and
ture. Conventional mean-field theory spuriously yields I'2=(SoS2)=1/2. A nonzero value fofs;s;) is inaccessible

#0 for J>J,=0.5. A similar HSMFT calculation on the for m=0 with standard mean-field theory.
square lattice yields In this paper, we suggest, as an alternative approach, to

take into account two-point connected graphs while calculat-
tanh2),=y=0.57= J.=0.323, ing I',=(sgs;), so that Eq(2) is now approximated using

1
m= >, Z(1+s-m+s.m+ s_s,mA)tanfJ(s_+s.)],
s_ s,
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Bon_1c0sh2+1

_ 2J
:82n+1_ ’
Bon_1+cosh 2

Bi1=e".

(s155- - -sn>=m“+m”‘2i2>j (sisj)c
, Therefore by substitution,
+mn_32i jZk <Sisj>c<sisk>c

F2n+l:Ef;n+l+ Zf2_n+1f;n+3+ §f2_n+1f2_n+3f;n+5+ T
m““‘iZj k2>|, (SiSj)c(SkS) et - -, C)
It was confirmed numerically that E¢Q) converges to

[ne1=(tanhd)®" 1,

+

N| =

@)

where “primed” sums exclude the indeindices fixed by

the preceeding sum, and), refers to the connected part, which is the exact value. The correlations for spins separated
ie., (sisj)c=(sisj>—m2. This improvement in the HSMFT with an even lattice spacing can be calculated in exactly the
is qualitatively different from what is suggested in Rgf].  same manner by the initial choice of three nearest-neighbor
The latter relies on considering larg8y clusters so that the spins forS;. Also note that using Eq(7) in two and three
boundary effects become less important, whereas the formelimensions allows fodifferent sets of coupled equations
takes into account the correlations of boundary spins for @imilar to Eq.(8) (yet certainly more cumbersomeeven
chosenS, cluster. In one dimension, where the boundarythough the coordination number may be the same. The solu-
consists of only two spins independent of the size of thdions of such equations in higher dimensions may require
cluster S;, we expect to get the exact resu{sgys,) further approximations since the problem gets intrinsically
= (tanhJ)" after including the second term on the LHS of Eq. difficult, yet still easier than an exact solution due to the
(7), since there are no higher order connected graphs left outeglecting of all but two-point connected graphs. In contrast
HSMFT equations in this case reduce to hierarchical equawith the standard mean-field equations, they will be

tions relatingl’,,, 1 to I'5 1

1 Fonsr,
F2n—1:§f;nfl+%f2nfli 8

where

et _Bon-100sh2—1 By 1 —cosh2
n-17p cosh2+1~ B,,_,+cosh2’

and

dimension-sensitive since the boundary of a cluster grows as
L9~1, It can be interesting to see if the power-law decay of
the critical correlations in high dimensions is accessible
within HSMFT. Study in this direction is in progress.
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