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Hard-spin mean-field theory: A systematic derivation and exact correlations in one dimension
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Hard-spin mean-field theory is an improved mean-field approach which has proven to give accurate results,
especially for frustrated spin systems, with relatively little computational effort. In this work, the previous
phenomenological derivation is supplanted by a systematic and generic derivation that opens the possibility for
systematic improvements, especially for the calculation of long-range correlation functions. A first level of
improvement suffices to recover the exact long-range values of the correlation functions in one dimension.

PACS number~s!: 05.70.Fh, 64.60.Cn, 75.10.2b, 05.50.1q
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I. INTRODUCTION

Hard-spin mean-field theory~HSMFT! @1–11# is a novel
‘‘mean-field’’ approach for classical spin models, which co
rectly gives no finite-temperature phase transition in one
mension, and agrees quantitatively with the existing Mo
Carlo data for the finite-field phase diagram of the fully fru
trated antiferromagnetic Ising model on a triangular latt
@1,2,8#. The latter has a zero-temperature phase transitio
the absence of external field, in contrast to the ferromagn
version with a finite Curie temperature. All these featu
attest to its superiority to the standard mean-field metho
which fail in these regards.

In this paper, I present a generic derivation of the HSM
equations, allowing for systematic improvements of their
curacy, and later argue that the lowest level of approxima
is rather inaccurate in predictinĝsisj&. Nevertheless, the
next level of approximation within the same framework r
covers the exact result in spatial dimensiond51. At this
level, HSMFT also differentiates between a two-dimensio
~2D! triangular and a 3D cubic lattice which is otherwise
typical failure of the mean-field theories.

HSMFT combines the mean-field logic with the hard-sp
condition (s251) which is in fact a crucial aspect of th
frustrated Ising models. Therefore it is particularly success
in the analysis of such systems~for a recent study, see, e.g
@12#!. Below is a systematic description of the theory.

II. HARD-SPIN MEAN-FIELD THEORY: A SYSTEMATIC
GENERIC DERIVATION

Given a lattice in any dimension, consider the partition
Fig. 1. Consider nearest-neighbor couplings so that ther
no direct coupling between the spins in regionsS1 and S2
~for longer range interactions, the boundaryB should be cho-
sen thick enough to ensure this decoupling!. Decompose the
Hamiltonian into three parts:

H5H11H21HB ,

such thatH1 andH2 involve interactions withinS1 and S2
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respectively, andHB contains the rest of the interaction
Then for a particular spin operatorO1 in S1,
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p~B!^O1&1
(B) , ~1!

where ^O1&1
(B) indicates the average ofO1 over S1 with a

fixed boundary condition~i.e., a frozen configuration ofB).
Note that above intuitive result is exact. Now,p(B), being a
function of spins inB only, can be written as

FIG. 1. Decomposition of space into three parts:S1 ~bounded!,
B ~boundary!, andS2 ~outside!.
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p~B!5
1

2NB
S 11(

i PB
si^si&S1 (

i , j PB
sisj^sisj&S1•••

1s1s2 . . . sNB
^s1s2 . . . sNB

&SD . ~2!

HSMFT equations, written down phenomenologically
previous works@1,2#, are obtained from this systematic e
pansion by neglecting the correlations in Eq.~2! for p(B).
However, this can be done at different levels. We can neg
all connected graphs by setting

^sisj•••sk&5^si&^sj&•••^sk&. ~3!

This leads to a set of self-consistent equations for^si&. To
contrast with traditional mean-field theory, what we negl
here is the effect of correlations among the boundary sp
on the average magnetization ofs0, rather than the correla
tions of s0 itself with its neighbors~Fig. 2!. We will see
below that the above improvement on the traditional me
field approximation already recovers the exact value of^s&
50 for the 1D Ising ferromagnet, but predicts the neare
neighbor correlation̂sisj& incorrectly. Yet the exact value
for ^sisj& can be obtained by further including two-poi
connected graphs in Eq.~2!.

III. HSMFT OF THE dÄ1 ISING FERROMAGNET

Consider the one dimensional ferromagnetic Ising mo
given by the Hamiltonian

2bH5J(
i

sisi 11 .

In correspondence with the above partition, defineS1
[$s0%,B[$s2 ,s1% ~left and right neighbors ofs0), andS2
as the rest of the spin chain. Then the self-consistent e
tion for ^s0&[m is

m5 (
s2 ,s1

1

4
~11s2m1s1m1s2s1m2!tanh@J~s21s1!#,

~4!

which simplifies to

m5m tanh~2J!,

correctly givingm50 everywhere except at zero temper
ture. Conventional mean-field theory spuriously yieldsm
Þ0 for J.Jc50.5. A similar HSMFT calculation on the
square lattice yields

tanh 2Jc5g.0.57⇒ Jc.0.323,

FIG. 2. Standard MFT~a! versus HSMFT~b!. Dashed lines
indicate the neglected correlations in each case.
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whereg is the real root ofg322g21g2150. This result is
to be compared with the exact valueJc50.4407 and the
mean-field resultJc50.25.

Similarly, by choosingS1 to be a cluster of two spins, on
can write down self-consistent equations form and G1
[^s0s1& and solve simultaneously. Let nowS1[$s1 ,s2% ~a
nearest-neighbor pair!, B[$s2 ,s1% ~left and right neighbors
of the S1 cluster!, and S2 the rest of the spin chain. As
before,m50 is obtained from Eq.~1! and we calculateG1
similarly as

G15 (
s2 ,s1

1

4
@11m ~s21s1!1m2s2s1#

3

(
s1 ,s2

s1s2eJ(s2s11s1s21s2s1)

(
s1 ,s2

eJ(s2s11s1s21s2s1)

, ~5!

which simplifies to give

G15
1

2 S e2Jcosh 2J21

e2Jcosh 2J11
1

e2J2cosh 2J

e2J1cosh 2J
D . ~6!

Figure 3 provides a comparison of Eq.~6! and the exact
value,G15tanhJ. In the low temperature limit (J→`), we
incorrectly obtainG1→2/3 rather than 1. Yet, note that w
obtain a nonzero correlation in spite of the fact thatall con-
nected graphs are neglected in Eq.~2!. Without including
any connected graphs, this result can be improved by c
sidering a largerS1 cluster, as was suggested in Ref.@2#. For
example, for a cluster of three spins, one getsG153/4 and
G25^s0s2&51/2. A nonzero value for̂sisj& is inaccessible
for m50 with standard mean-field theory.

In this paper, we suggest, as an alternative approach
take into account two-point connected graphs while calcu
ing G r[^s0sr&, so that Eq.~2! is now approximated using

FIG. 3. HSMFT prediction for̂ sisi 11& ~solid! compared with
the exact value of tanhJ ~dashed!, which is recovered at the nex
level of approximation implemented here.
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(
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8 ^sisj&c^sksl&c1•••,

~7!

where ‘‘primed’’ sums exclude the index~indices! fixed by
the preceeding sum, and̂•&c refers to the connected par
i.e., ^sisj&c5^sisj&2m2. This improvement in the HSMFT
is qualitatively different from what is suggested in Ref.@2#.
The latter relies on considering largerS1 clusters so that the
boundary effects become less important, whereas the for
takes into account the correlations of boundary spins fo
chosenS1 cluster. In one dimension, where the bounda
consists of only two spins independent of the size of
cluster S1, we expect to get the exact result^s0sr&
5(tanhJ)r after including the second term on the LHS of E
~7!, since there are no higher order connected graphs left
HSMFT equations in this case reduce to hierarchical eq
tions relatingG2n21 to G2n11:

G2n215
1

2
f 2n21

1 1
G2n11

2
f 2n21

2 , ~8!

where

f 2n21
6 5

b2n21 cosh 2J21

b2n21 cosh 2J11
6

b2n212cosh 2J

b2n211cosh 2J
,

and
er
a

e

.
ut.
a-

b2n115
b2n21 cosh 2J11

b2n211cosh 2J
, b15e2J.

Therefore by substitution,

G2n115
1

2
f 2n11

1 1
1

4
f 2n11

2 f 2n13
1 1

1

8
f 2n11

2 f 2n13
2 f 2n15

1 1•••.

~9!

It was confirmed numerically that Eq.~9! converges to

G2n115~ tanhJ!2n11,

which is the exact value. The correlations for spins separa
with an even lattice spacing can be calculated in exactly
same manner by the initial choice of three nearest-neigh
spins forS1. Also note that using Eq.~7! in two and three
dimensions allows fordifferent sets of coupled equation
similar to Eq. ~8! ~yet certainly more cumbersome!, even
though the coordination number may be the same. The s
tions of such equations in higher dimensions may requ
further approximations since the problem gets intrinsica
difficult, yet still easier than an exact solution due to t
neglecting of all but two-point connected graphs. In contr
with the standard mean-field equations, they will
dimension-sensitive since the boundary of a cluster grow
Ld21. It can be interesting to see if the power-law decay
the critical correlations in high dimensions is accessi
within HSMFT. Study in this direction is in progress.
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@8# A. Kabakçıoğlu, A.N. Berker, and M.C. Yalabık, Phys. Rev.
49, 2680~1994!.

@9# G.B. Akgüç and M.C. Yalabık, Phys. Rev. E51, 2636~1995!.
@10# J.L. Monroe, Phys. Lett. A230, 111 ~1997!.
@11# H. Kaya and A.N. Berker~unpublished!.
@12# A. Pelizzola and M. Pretti, Phys. Rev. B60, 10134~1999!.


